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Introduction

This report describes intelligent agents that
function as air traffic controllers. Each

agent controls traffic in a single sector in
real time; agents controlling traffic in

adjoining sectors can coordinate to

manage an arrival flow across a given
meter fix.

The purpose of this research is threefold.
First, it seeks to study the design of agents

for controlling complex systems. In

particular, it investigates agent planning
and reactive _control functionality in a

dynamic environment in which a variety of

perceptual and decision making skills play
a central role. It examines how heuristic

rules can be applied to model planning

and decision making skills, rather than

attempting to apply optimization methods.

Thus, the research attempts to develop

intelligent agents that provide an

approximation of human air traffic
controller behavior that, while not based

on an explicit cognitive model, does

produce task performance consistent with

the way human air traffic controllers

operate.

Second, this research sought to extend

previous research on using the Crew

Activity Tracking System (CATS)

(Callantine, Mitchell, and Palmer, 1999) as
the basis for intelligent agents (Callantine,

2001). The agents use a high-level model
of air traffic controller activities to

structure the control task. To execute an

activity in the CATS model, according to
the current task context, the agents

reference a 'skill library' and 'control

rules' that in turn execute the pattern

recognition, planning, and decision-

making required to perform the activity.

Applying the skills enables the agents to

modify their representation of the current
control situation (i.e., the 'flick' or

'picture'). The updated representation

supports the next activity in a cycle of
ection that, taken as a whole, simulates air

traffic controller behavior.

A third, practical motivation for this

lesearch is to use intelligent agents to

,.upport evaluation of new air traffic
control (ATC) methods to support new Air

Traffic Management (ATM) concepts.

Current approaches that use large, human-

in-the-loop simulations are unquestionably

valuable for this purpose (e.g., Callantine,

?revtt, Smith, and Palmer, 2001; Battiste,

et al., 2002; Raytheon, 2002), but pose

,:.onsiderable logistical, fiscal, and

_xperimental control problems. First, data
malysis is extremely complicated, owing

._imply to the large number of participants
_md data sources in such simulations. In

addition, experienced human air traffic
controllers working adjacent sectors tend

to flexibly adapt to the evolving control

problem - potentially shifting to other
strategies than those under investigation.
In addition, their performance is tightly

coupled to the control interface, which in

the development phase may support some

concepts and supporting strategies better
than others. A simple shift in strategy by

one controller can change the character of

a particular traffic scenario dramatically,
which makes experimental comparison of

ATC performance under different traffic
scenarios difficult. Training a given team

of controllers on operations under a new

ATM concept for a sufficient period of
time could avert such difficulties, but

instituting an adequate training program is

expensive and logistically difficult.

A more expeditious and inexpensive

approach involves testing concepts and
interfaces in a part-task setting, in which
one human controller subject coordinates

with agents controlling traffic in adjacent

sectors. Using agents this way ensures that
the traffic 'feed' to the subject controller

has been 'conditioned' by controlling it



accordingto a specificATC strategy
dictatedby developersof theATM
conceptandembodiedin thesupporting
agents.Thisreportqualifiesthecurrent-
day ('vectoring')conditionsunderwhich
theagents currently operate and what

additional capabilities are required to use

them with new ATM concepts in this

capacity.

Related Modeling Research

Modeling air traffic controller behavior

has generated considerable interest in

recent years. Before presenting the CATS
agents, this report provides some

background on related work. Modeling

efforts focus on (1) understanding features

of ATC as it impacts the performance of

National Airspace System (NAS) ATM, (2)

constructing models of operators in

complex environments, and (3)

embodying such models in intelligent

agents.

A model that focuses on NAS

performance is MITRE's Detailed Policy
Assessment Tool (DPAT) (Heimerman,

1997; Schaefer and Millner, 2001). DPAT
is a fast-time simulation of NAS

operations; however, it does not model air
traffic controller control actions. Another

tool, called the Reorganized ATC
Mathematical Simulator (RAMS) was

developed as part of the FAA/NASA

Aviation System Analysis Capability

Program (Mondoloni, 1998). RAMS uses
rules to resolve conflicts in en route air

traffic. It selects a single resolution for a

single aircraft that does not create any new
conflicts with any other aircraft. RAMS'

performance was compared to that of

actual controllers resolving the same

conflicts, and found to be agreeable.

However, the global focus of RAMS is
reflected in some of the resolutions it

constructs.

Other research has focused on modeling

the air traffic control task. Dowell (1998)
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developed an ecological model and used it

to derive the 'cognitive costs' associated

with monitoring, planning, and control

incurred by a human subject controlling
air traffic. Other researchers have

conducted empirical analyses of how

experienced air traffic controllers assess

traffic situations (Niessen, Eyferth, and

Bierwagen, 1999), and used them to

construct a computational cognitive model
of the air traffic controller's task based on

the ACT-R framework (Niessen, Leuchter,

and Eyferth, 1998). The resulting model

(called 'MoFI') was used primarily to

investigate the construction of the

controller's 'picture' of the traffic

situation. While the quality of ATC it
simulates is not discussed, the researchers
note MoFI was useful as the basis for

developing a computer-based tutoring
system for training situation awareness

strategies (Niessen and Eyferth, 2000).

Leiden (2000) also presents a model of en

route controller performance,

implemented as a task network model

using the MicroSaint modeling tool. The

model was not explicitly evaluated for its

ability to control air traffic, but instead as a

tool for producing predictive human

performance measures. Hexmoor and

Heng (2000) developed agents for

assisting a human tower controller, based
on a shared control scheme in which the

agents assume control when the human has
allowed a situation to become critical. The

agents construct prioritized cues of aircraft
in a small tower simulation, and use them

to detect and resolve conflicts and manage

landing clearances.

Finally, ATC agents have been developed

that incorporate a model of information

processing, situation assessment, and

decision making and procedure execution

(called 'SAMPLE') to represent

distributed decision making in future Air

Traffic Management (ATM) systems

(Harper, et al., 2002). Agents representing



pilots,controllers,andotherparticipantsin
theNASattemptto negotiatesolutionsto
enrouteconflictsandairspaceviolations.
Theagentshandledlevel-flightconflicts
usingheadingandspeedresolutionswitha
highdegreeof effectiveness.

In summary,theSAMPLEagentsandthe
RAMSsystemappearto be theonly
computationalATC agentsthathavebeen
evaluatedfor controllingtraffic in a
closed-loopsimulation.Bothfocuson
conflictdetectionandresolution.RAMS
operatesoverall flightphases,whilethe
SAMPLEagentresearchhasfocusedon
enrouteairspace,with afocuson
negotiationbetweenagents.RAMSis
nominallya mathematicalsimulation,
whereastheSAMPLEmodelattemptsto
representskilledhumanbehavior
hierarchically,possiblyprovidinga better
approximationof humanperformance.

CATS-basedAgents
TheCATS-basedagentspresentedin this
reportcomparemostcloselyto the
SAMPLEagents.Theyincorporatea
CATSmodelto representthemainaspects
of air traffic control- situationawareness,
problemidentification,andclearance
formulation- in termsof hierarchically
decomposedactivities.As theagents
performactivities,theyaccessskillsand
controlrules,thenupdatetheir
representationof thecurrentoperational
context,whichenablesthemto perform
theirnextactivity.

Theagentsuseheading,route,altitude,and
speedclearancesto spaceaircraftin an
arrivalflow andresolveconflictsas
current-dayair traffic controllersmight,
by applyingheuristicrulesto planand
issueclearances;theagentsdonotuse
globaloptimizationmethods.Agentsin
differentsectorscontroltraffic from cruise
to meterfix crossing(nodeparturesor
overflightsareasyetincludedin thetraffic
scenarios).Thus,theagentsaddressboth

en routeandarrival control problems,

i_acluding merging traffic flows.

Specifically, agents in en route sectors

attempt to space aircraft a specified

distance in trail (even across flows, if

applicable). Agents in low altitude (feeder)

s_ctors attempt to merge arrival traffic and

achieve a specified spacing across the
nLeter fix.

The remainder of this report is organized
as follows. It first describes the CATS

agent approach, and the agent
coordination architecture. It then describes

the CATS model that represents controller

activities, discusses the skills and priorities

key activities use, and the flow of control

that results when the agents execute

activities in real time according to the
CATS model. It then describes the rules

and skills used to space and separate

aircraft. These activities may lead the

agents to formulate plans; the report

details the plans and triggers for executing

a particular plan. Finally, the report

l:resents results of applying the agents to
control arrival traffic, and discusses
directions for further research.

CATS Agents

CATS 'activity tracking' applications use

a model of hierarchically decomposed

activities to predict what activities the

t uman operator should perform in a given

c,perational context, and then use these

[,redictions as the basis for interpreting

actual operator actions as correct or in
error. CATS-based agents are designed to

supplant the human operator; they simply
execute the activities predicted according
ttle model to control a simulated

controlled system (Callantine, 2001).

CATS activity tracking applications take
ciata on the state of the controlled system,

and the constraints on controlled system

trajectory that define the operator's goals,
nd use these data to generate a summary

of the current operational context. The
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context represents the true state of the
world, to the extent possible. CATS agents,

on the other hand, maintain an internal set

of 'beliefs' that may or may not (in the

case of agents that err) reflect the true state

of world and the attendant operational
context.

The type of activity a CATS agent is

executing determines how the agents

processes beliefs when executing it.

Performing a perceptual activity entails

transforming information found in a

representation of the appropriate visual or

auditory 'display' into a set of 'beliefs'

about the information. Performing a

cognitive activity entails further

assimilation of information already present

in the agent's belief set, to produce beliefs
at different levels of abstraction and/or

aggregation, or the results of a decision

making process. Manual activities entail

executing the activity using a given
control; verbal activities entail transmitting

some information to another agent.

Underlying this scheme is the theory that
all salient activities involve transforming or

communicating contextual information.

Multi-agent Architecture

Multiple CATS agents operating together

have to date relied on a synchronous,
'tick-based' architecture to control

processing. A central controller sends each

agent a message on each "tick' (typically

one second in duration) that cues each

agent to perform a single processing cycle.

A processing cycle consists of using the

representation of the current operational

context to predict which activities need to

be performed, and executing those
activities. This works well for CATS

models structured to enable agents to

perform multiple activities at once, in
situations where the performance of

individual agents is tightly coupled. The

flight crew agents discussed by Callantine

(2001) provide an example: the agent that

represents the pilot-not-flying can set a

target value using the Mode Control Panel
of the aircraft while simultaneously

listening for an ATC instruction on the
radio.

As the results section of this report

indicates, this scheme is not ideally suited

for air traffic controller agents;

nonetheless, it was applied as a starting

point, as depicted in Figure 1. The

architecture uses an 'Agent Hub' process
to connect to an Aeronautical Data link

and Radar Simulator (ADRS) process.
ADRS's function as simulation hubs for

the overall air traffic simulation (Prev6t,

Palmer, Smith, and Callantine, 2002). The

Agent Hub provides four critical functions

beyond synchronizing the agent

processing times. First, it receives aircraft
data from the ADRS and provides it to the

agents each time the traffic display is

updated (i.e., every twelve seconds).

Second, it forwards clearances produced

Agent Hub

Figure 1. Generic CATS ATC agent architecture.
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by the agents to the ADRS, which forwards
them to the aircraft simulation. Third, it

forwards handoff requests and accepts to

the appropriate agent, and finally, it

forwards aircraft flight plan and clearance

constraint information from an 'upstream'

agent to a 'downstream' agent. Thus,
when an aircraft is handed off, the

upstream agent makes flight plan and

clearance information, traditionally

recorded on 'flight progress strips,'

available to the next controller agent.

CATS Agent Architecture

The CATS ATC agent architecture is

derived from the CATS flight deck agents

described in Callantine (2001). Figure 2

depicts how knowledge representations in
the air traffic controller agents inform

each other. The agent hub provides each

agent with information about aircraft

shown on the agent's traffic display, as

well as information on aircraft flight plan

Agent

Hub

Traffic state

Handoff requests�accepts

Flight plans

constraints and handoffs. The agents have

representation of beliefs about the
current task context, and a CATS model

that specifies the high-level activity

structure. The agent uses its task context

beliefs to select an activity to perform

_uring a given processing cycle from its

activity model. The activity model

represents information about how the

_ctivity transforms beliefs. The 'Belief
Transformer' uses this information to

_ccess a library of skills to generate beliefs
that summarize or reformulate traffic

iaformation presented on its display, or
_ccess a set of control rules to formulate a

ciearance to issue an aircraft. Control rules

may themselves use information from the

skill library to support the decision

making process. Regardless of the

particular activity the agent performs, the

_gent's belief set is in some way

transformed, by adding, removing, or

_ltering the agent's beliefs about the

plans

Figure 2. Information flow in CATS ATC Agents.
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situation, and by changing the agent's
beliefs about the task context to reflect that

the particular activity was performed.

Beliefs that represent the current

operational context (both the task context,
and situational elements of the controlled

system) are central to the CATS agent

architecture. The agents also use beliefs to

represent retrospective context (memory
for what the agent has done) and

prospective memory for planned activities.

Through belief manipulations, the agents

implement a prospective memory process

model that resembles that of Kliegel,
Martin, McDaniel, and Einstein (2002).

The CATS agents must perform planning
in the context of reactive control, because

heuristics do not always consider the

impact of aircraft just 'outside' the

problem of interest. For example, an agent

may identify two aircraft to be in conflict,

but in applying heuristics represented in
the control rules to generate a solution, the

agent may not consider the impact of
aircraft immediately behind a conflict

aircraft. By planning to issue a clearance

to solve the conflict, rather than issuing the

clearance fight away, the agent has the

option to adapt the plan if the conditions

necessary to execute it turn out not to be

met by the evolving situation. Plans are

stored, so that the agent can 'remember'
them and evaluate the conditions for

executing them.

In general, the control rules govern which

clearances should be issued or planned.

Agents use the skill library to assess

information on the traffic display, and in
some cases to formulate clearance values.

Examples of skills are detecting conflicts,

determining spacing relationships between

aircraft, and determining the exact value of

a heading vector to issue. Some perceptual

activities are purely skill-based, while some

cognitive activities reference control rules

that require accessing skills themselves.

The following sections provide additional

detail on key elements of the CATS agent
architecture.

• Maintain situation awareness

- Moni_rtmttic display
- Scan aircraft

• Determine_craft to work

• Manage,_offs

- Accept aircxaft
• Accept'handoff

• Roger check-in

Initlatehandoff
• lnfoi,mo_ eoiua,m_ll_
• Issue f_equency change

• Managed_
Issue dat _anee

• Managesepamti,i_ _-:,

- Evahn_. __:dearanceoptions

• Manage._ii_il _.: .,_,

- Re:md_ :

6
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CATS Model

Each agent encapsulates an activity model

to drive the high-level selection of

activities to perform. The model represents

activities hierarchically, down to the level

of actions. The CATS model developed

for the CATS air traffic controller agents is

shown in Figure 3. The model is roughly

comprised of three pieces. The first is the

'maintain situation awareness' activity, and

its children, 'monitor traffic display,' and
'scan aircraft.' These activities are devoted

to gathering information from displayed
traffic information. A second portion is

the 'determine aircraft to work' activity,

which represents the activity of selecting a

problem to address from those currently
identified.

The third portion is a collection of

'manage" activities that are performed
based on the outcome of the 'determine

aircraft to work' activity. Accepting and

initiating handoffs are represented by the

'manage handoffs' activity. Note that

because the agents operate closed-loop via
the ADRS connection, the 'roger check-

in' and 'issue frequency change' activities

are not required for this implementation,

and therefore appear grayed out in Figure

3. 'Manage descents' is devoted to
providing aircraft with a descent clearance

sometime before they reach their planned

top-of-descent points. 'Manage descents'

tses knowledge about how far the aircraft

can be cleared, given the airspace

configuration, as well as control rules for

providing positive altitude separation.

'Manage separation' is the activity

cevoted to resolving detected conflicts,

x_hile 'manage spacing' addresses aircraft

ttmt, while not technically in conflict, do

iolate desired in-trail spacing goals.

tqnally, 'manage non-conformance'

addresses aircraft that are not presently in

compliance with their constraints; based on

tile type of non-compliance (lateral,

xertical, or speed), the agents re-issue a

clearances as necessary to get the aircraft

to) comply.

}'_eturning now to the 'maintain situation

wareness' activity, its ftrst sub-activity is

'monitor traffic display,' which simply

_:enerates a belief that reflects which

aircraft are currently present in the agent's

sector. The second sub-activity, 'scan

e ircraft,' is devoted to identifying the

current control problems that exist for the
sector aircraft identified by "monitor

traffic display.' Figure 4 presents a

cietailed picture of the control problems
that the 'scan aircraft' activity identifies.

When an agent executes this activity, the

_gent's skill library is accessed to identify
each of the classes of control problems

shown in Figure 4. The activity produces
beliefs about the existence of various

t_roblems that are then referenced by the

Identify:

- Aircraft  tl!plans tliatneedto beexecuted
.4.

B

m

Figure 4. Purpose of 'Scaa aircraft' activity. 7



'determine aircraft to work' activity. The

model, as implemented, does not

decompose the 'scan aircraft' activity into

'identify' activities. This cuts down

processing overhead somewhat, but there is
no technical reason that an agent could not

concurrently execute lower-level

'identify' activities for each of the

elements listed in Figure 4.

The 'determine aircraft to work' activity
identifies the aircraft or set of aircraft that

the controller should address next. When

executed, it references the beliefs created

during the 'scan aircraft' activity, then
selects the aircraft to work based on the

priorities shown in Figure 5. Note that

these priorities are established based on the
effectiveness of the mechanisms used to

identify the control problems as much as

how controllers are thought to prioritize

control problems. For instance, an actual
air traffic controller would most likely

assign a higher priority to non-

conforming aircraft. However, because the

agents can sometimes identify non-
conformance incorrectly, owing to the
need for further refinements to its

representation of clearance constraints (see
Callantine, 2002), non-conformance is

assigned a lower priority in the present

implementation.

The priorities shown in Figure 5 reflect the

critical importance of executing plans as

soon as the conditions for doing so are

met. For plans that consist of multiple

steps (e.g., vector an aircraft off its route,

then to a route-intercept heading, then

back on its flight plan route), later steps in

the plan may depend on earlier steps for

their success. Thus, it is important that the

early step is executed as soon as possible.

Conflicting aircraft receive the second

highest priority, as they may require the

most radical steps to address. In the

present implementation, in order for the

agents to generate a vector, aircraft must
be in conflict. Next are aircraft that need

to be spaced. The agents use speed

clearances to space aircraft, and it is

relatively easy to determine safe speeds.

Next after spacing aircraft are aircraft that

require descent clearances. The agents are

configured such that, in the absence of

conflicts during the descent, they are

certain to get aircraft down in time;
otherwise these aircraft would also receive

a higher priority. Finally, handoff

acceptance, and handoff initiation receive

lowest priority. This reflects observed
human air traffic controller behavior, in

that controllers typically do everything
else that needs to be done, then take (or

issue) several handoffs consecutively.

CATS Agent Beliefs

An important feature of the 'determine

aircraft to work' activity is, depending on

Priority:
1. Aircraft with executable plan

2. Conflict aircraft

3. Within-flow spacing problems

4. Cross-flow sp_ problems

5. Aircraft that need a descent clearance

6. Aircraft thatneed to be handed off

7. Non-conforming aircraft

8. Handoffs that need to be accepted

Figure 5. Priority used for selecting control problems in the 'determine aircraft to work' activity.
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Always

Display needs scanning

Looked at traffic display

Have aircraft to work

Know which aircraft to accept

Know which aircraft to hand off

Know which aircraft to descend

Factors identified (refers to conflict aircraft)

Spacing aircraft identified

Know which aircraft to clear (separate)

Know which aircraft to space

Know which aircraft isn't conforming

Figure 6. Task coJatext beliefs.

the results of the assessments it performs,
different beliefs are added to and removed

from the agent's current set of beliefs
about task context. This is an extension of

the CATS agent framework presented in
Callantine (2001) (see Appendix A for a
discussion of the extended CATS model

file specification and associated processing

issues). The beliefs used to represent task
context are shown in Figure 6. In essence,

the last several beliefs ('know which...'

and "... identified') correspond to the type

of control problem identified in
'determine aircraft to work.' The 'always'

belief ensures that the CATS model's top-

level activity, 'control traffic,' is always

active, so that the top-down search used to

predict activities in CATS has the

opportunity to find one.

In addition to the task context information

that may be included in an agent's belief
set, beliefs about the traffic control

situation may also be included. Figure 7

depicts some specific beliefs about the
current situation, memory for when

problems were last addressed, and

prospective memory for plans.

Retrospective memory for when problems
were last addressed is important because it

takes some time for the displayed traffic
information to reflect for the effects of a

clearance. Because the problem may

ppear to continue to exist for a period of
time, without the "check' beliefs an agent

x_,ill repeatedly address the same (higher

priority) problem to the exclusion of other

[,roblems -- even if they have actually

elready addressed it. Prospective memory,
in the form of plans associated with

tJarticular aircraft, and especially as
reflected in beliefs about an aircraft that

has a plan that needs to be executed

immediately, is a vital part of the CATS

ztgent scheme. This is because control rules
do not address 'other' aircraft that also

impact the control problem of interest.

The justification for including beliefs in
Ihe format shown in Figure 7 is for

displaying them, and also in looking ahead
lo a scheme for generating errors by

Check ero_s: !flow ispacing [time ] [aircraft]

Check_within_flow_spacing [time ] [aircraft]

Cheek:__con_et [_e] [aircraft]

_:desecnt![time] [aircraft]

Cross_flOw,spacing[aircraft clusters]

;{aircraft clusters]

Figure 7. Traffic control situation context beliefs.
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altering the contents of the beliefs. In the

current implementation, however, other

important information for applying the
control rules, retaining the contents of an

about-to-be-issued clearance, and of

course, the state and constraint information

for each aircraft, is maintained using

representational objects and variables in

code. The most important of these involves

'role bindings' for aircraft. The agents use

role bindings to provide a general way to

specify a frame of reference for the

application of control rules (see Horswill

and Zubek, 1999). When agents initially

execute the 'monitor traffic display'

activity (the first activity to perform after

the traffic display is updated), they access

their skill library to 'bind' aircraft to

crucial roles (e.g., 'inFront,'

'inFrontSequence,' 'firstConflict,' etc.).

For each bound role, the agents also access

perceptual skills to assign a bit-vector of
attributes. This information is simply too

fluid and too complex to represent as a

'belief string' (and would defeat the

purpose of representing it as a bit-vector to

begin with). This issue will be revisited
below, in the discussion of control rules.

Figure 8 summarizes how the agents work,

at the high level governed by the activity
model. In essence, the structure of the

activity model, and the beliefs about

control problems, plans, etc., yield a flow-

of-control that reflects the priorities used

by the 'determine aircraft to work'

activity. The flow of control can be
considered at least somewhat congruent
with that observed in actual air traffic

controllers, although further research is

needed in this area. A comprehensive set

of priorities from experienced controllers

may be difficult to elicit at a more detailed
level than that of the situation assessment

studies performed by Niessen, et al.
(1999). This is because the context

information used is largely perceptual and

likely far richer, and the prioritization

process is more deeply ingrained as skill.

Control Rules

This section describes the heuristics the

agents use to determine clearances in the

current implementation. The agents have

two top-level entry points to the rule base

depending upon whether they are

addressing a 'spacing problem,' related to

putting aircraft a specified distance in trail,

No

No

No

plan

MId_ plaJato
resolve

No

No

Do handoff

No

Figure 8. Flow of control resulting from the CATS model used by the CATS ATC agents.
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• If excess spacing, speed up/plan to match speeds

If insufficient spacing:

- If no aircraft in front offron; or behind back, stagger
speeds

- If no aircraft in front offron_, but aircraft behind

back, speed lead aircraft up

- If aircraft in front of front, but not behind back, slow
back aircraft

- If aircraft in _nt of front, and behind back, require
vectors (handle as conflict u,,;ing separation rules)

Figure 9. CATS ATC agen: spacing rules.

or a 'separation problem,' related to

resolving a conflict, including those that

occur at a merge point. In general, the
agents solve spacing problems with speed,

and separation problems with vectors.

However, by adjusting what qualifies as a

conflict to use the in-trail spacing

requirement as the separation value, the

agents can solve spacing problems by

issuing vectors.

The agents use the spacing rules shown in

Figure 9. Four strategies to space aircraft

are incorporated in the rules: 'speed

up/plan to match speeds,' 'stagger speeds,'

'speed lead aircraft up,' and 'slow back
aircraft.' The rules access two skills to

determine which rules to apply: 'excess

spacing' and 'insufficient spacing.' When
aircraft are evaluated by the spacing rules,

one is designated 'front' and the other is

designated 'back.' In cases where the

specified spacing is insufficient, the

strategy invoked is determined using the

role bindings attached to the 'front' and
'back' aircraft. Each of these aircraft, in

turn, has aircraft bound to roles called

'inFront' and 'behind,' and to the roles

"inFrontSequence' and

'behindSequence.' The latter role

bindings refer to aircraft that are actually

in front or behind, but are in 'adjacent

flows' (which is the case when two traffic

streams traverse a sector, to be merged in a

downstream sector). By referencing the

role bindings, the spacing rules can base

s :rategy determination on the presence of
'other' aircraft in the vicinity of the

s?acing problem.

Agents can issue clearances immediately

fi)r all of the spacing strategies, except

when there is excess spacing. In this case,

the agent immediately issues the back
aircraft clearance to accelerate to 'close

the gap,' and establishes a plan to match

the lead aircraft's speed when the spacing

r_vaches the desired spacing. The plans that

the agents use are described in the section

that follows. As noted above, spacing

problems that occur in the midst of other

aircraft are handled by separation rules

u:;ing vectors.

1_igure 10 shows the separation

(vectoring') rules that the agents use.

Vectoring to resolve conflicts is more
c:)mplex than issuing speed clearances for

s?acing, because nothing can be done

without prior planning. Rules are again
s:ructured to reference a 'front' and

'back' aircraft and role bindings are used

to reference aircraft in the vicinity of those

ila conflict. Because the agents only
address aircraft in arrival flows, conflict

aagles are small, and as such, the 'front'
aad 'back' designations make sense.

Separation rules for 'opposite direction'

11



If front directly in front and no aircraft behind back:

- If merge, plan to merge
- Otherwise, plan minimal offset

If front directly in front and aircraft behind baclc.

- If merge, plan-to merge

- Otherwise, plan minimal offset and plan to match
vectors for aircraft behind back

If front in front sequentially and no aircraft behind back:

- If,_mea:,ge,planto turn intomerge

- Otti_ise; plan to vector and turn'back

If front in _0nt sequentially and aircraft betfindback:

- If merge, plan to turn in to merge
- Otherwise, plan to vector and turn back and plan to

match vectors for aircraft behind back

• Multiple:aireraftconflicts
- Only handlein eases of merge, using plan tomerge or

plan to turn in, to,merge

Figure 10. CATS ATC agent separation rules.

conflicts, and conflicts between arrivals

and 'other' aircraft require a prioritization
scheme for which aircraft should best be

vectored, which is a subject of further
research.

Several skills are accessed by the

separation control rules. Specifically,

agents have a skill for determining whether

the conflict in question is a 'merge

condition,' and skills for assigning values

for each type of vectoring plan. A given

vectoring strategy consists of multiple plan

steps (e.g., the strategy 'plan to vector and
turn back" consists of three plans: 'delay

vector,' 'turn back vector,' and 'resume

route'). Some separation rules also address

planning for vectoring aircraft bound to

roles. For example, when an aircraft is

directly behind the 'back' aircraft (i.e.,

bound to its 'behind' role), agents apply

the strategy 'plan to match vectors' to that

aircraft in the same planning pass, so that
the aircraft behind the 'back 'aircraft can

be delay-vectored first. Experienced air

traffic controllers have been observed to

use this technique. Conflicts involving

more than two aircraft present a special

case. The agents cannot reasonably sort

out how to plan to turn multiple aircraft,

except when all are merging at the same

point. In this case, the role bindings are

used to establish a sequence, which breaks
the conflict into a number of conflict

pairs.

The agents use knowledge about when

aircraft in their particular sector should
descend in order to hand them off at the

required altitude. Control rules also

incorporate positive altitude separation.

These rules attempt use the aircraft bound

to the role 'firstConflict' to gauge whether

the aircraft can be cleared all the way

down to the required sector-exit altitude

for arriving aircraft, or whether an
intermediate altitude above the conflict

aircraft is required. Agents re-address
aircraft cleared to an intermediate altitude

periodically (via 'check_descent' beliefs)

12



to determine if they can be cleared to a
lower altitude, until the aircraft are cleared

all the way down to the exit altitude for the
sector.

Plans

From the discussion of control rules above,

it is clear that planning plays a critical role

in the successful application of control

strategies. Agents are not capable of

globally assessing clearance options under

the 'application of heuristics' scheme
employed in this research. Thus, plans are

constructed of steps that have, based on

their type, a set of conditions under which

the plan should be executed or adapted

(which includes abandoning the overall

plan or a step of the plan altogether).

Several plans (plan 'steps') were identified

for inclusion in the planning strategies

used by the control rules. Figure 11 shows

these plans as they relate to the lateral,

vertical, and speed dimensions of control.
Five were never used (shown grayed-out in

Figure 11). The vertical plans are

supplanted by immediate clearances (i.e.,

there was no perceived need to plan these
actions). The lateral plans 'direct-to,' and
'meter fix direct-to' were also never

needed; the plan 'return to route' covers
both of these functions. Lastly, the speed

plan 'allow to pass' introduced difficulties

with role bindings (e.g., by its very nature,

at some point the aircraft 'inFront'

becomes the aircraft "behind,' etc.).

l!_ecause the agents bind roles before the

plans are checked for execution, this

_:reated problems. 'Naturally faster'

aircraft are therefore obliged to stay

l_hind slower aircraft for spacing, under
lhis scheme.

The remaining plans shown in Figure 11

combine to cover the control strategies

implemented by the control rules. The

agents use the lateral plans to implement

:;trategies used in the separation rules.

Lateral planning strategies entail, first, a

plan to 'delay vector' (or 'match planned

lead delay vector'), followed in some cases

by a 'turn back vector' (or 'match

planned lead turn back vector'). Finally,

lateral planning strategies add a 'return to

route' plan (or a 'return to heading" plan,
if the aircraft has no known route to

rejoin). The agents determine the values of
the vectors encompassed by the plans

_tsing skills in their skill library.

The agents use speed plans to implement

:_trategies used by the spacing rules. Speed

_lans are given in pairs, depending on
whether a Mach number or indicated

airspeed is called for. While the spacing

:_ules shown in Figure 9 reference only the

'match lead' speed or mach plans

,_xplicitly, the agents use the remaining
iow-level 'accelerate' and 'decelerate'

_peed plans as necessary to implement the

'stagger speeds' strategy.

Lateral plans: ., Vertical plans:
- Delay vector - Climb temporary altitude
- Match planned lead delay vector - Descend temporary altitude
- Turn back vector ., Speed plans:
- Match planned lead turn back - Match lead speed

vector - Match lead mach
Return to heading - Accelerate

- Return to route - Accelerate-mack
- Direct-to - Decelerate
- Meter fix direct-to - Decclerate-mach

- Return'to route-merge - Allow to pass

Figure 11. Plans to implement planning strategies used in control rules.
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Speed,plans:
- Match leadspeed

• Notinsufficientspacing& notexcessspacing
- Match leadmath

• Notinsufficientspacing& notexcessspacing
- Accderate

• Excessspacing
- Accelerate-roach

• Excessspacing
- Decelerate

• Insufficientspacing
- Decelerate-mach

• Insufficientspacing

- Allow to pass
• No conditions (requires 'naturally faster' rules to be in

effect)

Figure 12. Execution conditions for speed plans.

A critical feature of each type of plan is
the set of conditions under which the

agents should execute it. Each plan has
conditions for execution that relate to the

control strategy that the agent was
following when developing the plan for an
aircraft. The execution conditions

reference roles that the agents bind to the

plan at the time it is developed. A plan

records, for example, the 'front' aircraft

against which proper spacing is to be

measured. In addition, a plan records the

time the agent developed it and, in the case
of turn-back vectors, the value of the

vector and the time at which the agent

plans to execute it.

Figure 12 shows the execution conditions

for speed plans. The execution conditions

reference the agent's skills to detect

insufficient and excess spacing. For

example, when an agent implements the

strategy termed 'speed up/plan to match

speeds,' it clears the 'back' aircraft to a

faster speed and also logs a 'match lead

mach' plan for it. Each time it executes

the 'scan aircraft' activity, the agent
checks whether the 'back' aircraft has

closed to the desired distance behind the

"front' aircraft referenced by the plan. If

it has, it executes the plan to match the

lead aircraft's Mach by issuing the

appropriate Mach number as a clearance.

As shown in Figure 13, the conditions for

executing lateral plans are more complex.

Typically, they include conditions for

executing the plan under circumstances

where vectoring skills handled the situation

well, along with some that function as

'stop-gap measures.' Such conditions are

required when, for example, the agents

vector aircraft toward a sector boundary,

or when the aircraft flies on a vector past a

waypoint that was to be the point at which

the aircraft rejoined the route. Some
conditions are included to ensure that

aircraft cross the meter fix. Still others

make sure an aircraft is not handed off

before it has been cleared to rejoin its filed

routing, as the plans with which the agent

sought to accomplish that are not

transmitted to the receiving agent; only the
current clearance constraints that the

aircraft is following are transferred. In

short, deficiencies in the agent's skill

library, together with the dynamics of

addressing various control problems,

necessitate ways to adapt plans to ensure

the agents issue reasonable clearances.
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Introduction

This report describes intelligent agents that

function as air traffic controllers. Each

agent controls traffic in a single sector in
real time; agents controlling traffic in

adjoining sectors can coordinate to
manage an arrival flow across a given
meter fix.

The purpose of this research is threefold.
First, it seeks to study the design of agents

for controlling complex systems. In

particular, it investigates agent planning
and reactive 1control functionality in a

dynamic environment in which a variety of

perceptual and decision making skills play
a central role. It examines how heuristic

rules can be applied to model planning

and decision making skills, rather than

attempting to apply optimization methods.
Thus, the research attempts to develop

intelligent agents that provide an

approximation of human air traffic
controller behavior that, while not based

on an explicit cognitive model, does

produce task performance consistent with

the way human air traffic controllers

operate.

Second, this research sought to extend

previous research on using the Crew
Activity Tracking System (CATS)

(Callantine, Mitchell, and Palmer, 1999) as
the basis for intelligent agents (Callantine,

2001). The agents use a high-level model
of air traffic controller activities to

structure the control task. To execute an

activity in the CATS model, according to
the current task context, the agents

reference a 'skill library' and 'control

rules' that in turn execute the pattern

recognition, planning, and decision-

making required to perform the activity.

Applying the skills enables the agents to
modify their representation of the current
control situation (i.e., the 'flick' or

'picture'). The updated representation

s,apports the next activity in a cycle of
rction that, taken as a whole, simulates air

traffic controller behavior.

A third, practical motivation for this

l esearch is to use intelligent agents to

.,:upport evaluation of new air traffic
control (ATC) methods to support new Air

Traffic Management (ATM) concepts.
Current approaches that use large, human-

in-the-loop simulations are unquestionably

',,aluable for this purpose (e.g., Callantine,

?revft, Smith, and Palmer, 2001; Battiste,

,_:tal., 2002; Raytheon, 2002), but pose

_::onsiderable logistical, fiscal, and

:;xperimental control problems. First, data

_malysis is extremely complicated, owing

_imply to the large number of participants
_md data sources in such simulations. In

addition, experienced human air traffic

controllers working adjacent sectors tend

to flexibly adapt to the evolving control

problem - potentially shifting to other

:strategies than those under investigation.
In addition, their performance is tightly

coupled to the control interface, which in

the development phase may support some

concepts and supporting strategies better
than others. A simple shift in strategy by

one controller can change the character of

a particular traffic scenario dramatically,
which makes experimental comparison of

ATC performance under different traffic
scenarios difficult. Training a given team

of controllers on operations under a new

ATM concept for a sufficient period of
time could avert such difficulties, but

instituting an adequate training program is

expensive and logistically difficult.

A more expeditious and inexpensive

approach involves testing concepts and
interfaces in a part-task setting, in which
one human controller subject coordinates

with agents controlling traffic in adjacent
sectors. Using agents this way ensures that
the traffic "feed' to the subject controller

has been 'conditioned' by controlling it



accordingto a specificATC strategy
dictatedby developersof theATM
conceptandembodiedin thesupporting
agents.Thisreportqualifiesthecurrent-
day ('vectoring') conditionsunderwhich
theagents currently operate and what

additional capabilities are required to use

them with new ATM concepts in this

capacity.

Related Modeling Research

Modeling air traffic controller behavior

has generated considerable interest in

recent years. Before presenting the CATS
agents, this report provides some

background on related work. Modeling

efforts focus on (1) understanding features

of ATC as it impacts the performance of

National Airspace System (NAS) ATM, (2)

constructing models of operators in

complex environments, and (3)

embodying such models in intelligent

agents.

A model that focuses on NAS

performance is MITRE's Detailed Policy
Assessment Tool (DPAT) (Heimerman,

1997; Schaefer and Millner, 2001). DPAT
is a fast-time simulation of NAS

operations; however, it does not model air
traffic controller control actions. Another

tool, called the Reorganized ATC
Mathematical Simulator (RAMS) was

developed as part of the FAA/NASA

Aviation System Analysis Capability

Program (Mondoloni, 1998). RAMS uses
rules to resolve conflicts in en route air

traffic. It selects a single resolution for a

single aircraft that does not create any new
conflicts with any other aircraft. RAMS'

performance was compared to that of

actual controllers resolving the same

conflicts, and found to be agreeable.

However, the global focus of RAMS is
reflected in some of the resolutions it

constructs.

Other research has focused on modeling

the air traffic control task. Dowell (1998)
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developed an ecological model and used it

to derive the "cognitive costs' associated

with monitoring, planning, and control

incurred by a human subject controlling
air traffic. Other researchers have

conducted empirical analyses of how

experienced air traffic controllers assess

traffic situations (Niessen, Eyferth, and

Bierwagen, 1999), and used them to

construct a computational cognitive model
of the air traffic controller's task based on

the ACT-R framework (Niessen, Leuchter,

and Eyferth, 1998). The resulting model

(called 'MoFI') was used primarily to

investigate the construction of the

controller's 'picture' of the traffic

situation. While the quality of ATC it
simulates is not discussed, the researchers
note MoF1 was useful as the basis for

developing a computer-based tutoring

system for training situation awareness

strategies (Niessen and Eyferth, 2000).

Leiden (2000) also presents a model of en

route controller performance,
implemented as a task network model

using the MicroSaint modeling tool. The

model was not explicitly evaluated for its

ability to control air traffic, but instead as a

tool for producing predictive human

performance measures. Hexmoor and

Heng (2000) developed agents for

assisting a human tower controller, based
on a shared control scheme in which the

agents assume control when the human has
allowed a situation to become critical. The

agents construct prioritized cues of aircraft
in a small tower simulation, and use them

to detect and resolve conflicts and manage

landing clearances.

Finally, ATC agents have been developed

that incorporate a model of information

processing, situation assessment, and

decision making and procedure execution

(called 'SAMPLE') to represent

distributed decision making in future Air

Traffic Management (ATM) systems

(Harper, et al., 2002). Agents representing



pilots,controllers, and other participants in

the NAS attempt to negotiate solutions to

en route conflicts and airspace violations.

The agents handled level-flight conflicts

using heading and speed resolutions with a

high degree of effectiveness.

In summary, the SAMPLE agents and the

RAMS system appear to be the only

computational ATC agents that have been
evaluated for controlling traffic in a

closed-loop simulation. Both focus on
conflict detection and resolution. RAMS

operates over all flight phases, while the

SAMPLE agent research has focused on

en route airspace, with a focus on

negotiation between agents. RAMS is

nominally a mathematical simulation,
whereas the SAMPLE model attempts to

represent skilled human behavior
hierarchically, possibly providing a better

approximation of human performance.

CATS-based Agents

The CATS-based agents presented in this

report compare most closely to the

SAMPLE agents. They incorporate a

CATS model to represent the main aspects
of air traffic control - situation awareness,

problem identification, and clearance
formulation - in terms of hierarchically

decomposed activities. As the agents

perform activities, they access skills and
control rules, then update their

representation of the current operational
context, which enables them to perform

their next activity.

The agents use heading, route, altitude, and

speed clearances to space aircraft in an
arrival flow and resolve conflicts as

current-day air traffic controllers might,

by applying heuristic rules to plan and

issue clearances; the agents do not use

global optimization methods. Agents in
different sectors control traffic from cruise

to meter fix crossing (no departures or

overflights are as yet included in the traffic
scenarios). Thus, the agents address both

ea route and arrival control problems,

ivtcluding merging traffic flows.

Specifically, agents in en route sectors

attempt to space aircraft a specified

distance in trail (even across flows, if

applicable). Agents in low altitude (feeder)
s:;ctors attempt to merge arrival traffic and

achieve a specified spacing across the
meter fix.

The remainder of this report is organized
as follows. It first describes the CATS

agent approach, and the agent
coordination architecture. It then describes

the CATS model that represents controller

activities, discusses the skills and priorities

key activities use, and the flow of control

that results when the agents execute

activities in real time according to the
CATS model. It then describes the rules

and skills used to space and separate

aircraft. These activities may lead the

agents to formulate plans; the report

details the plans and triggers for executing

a particular plan. Finally, the report

l:_resents results of applying the agents to
control arrival traffic, and discusses

irections for further research.

CATS Agents

CATS 'activity tracking' applications use

a model of hierarchically decomposed

activities to predict what activities the

l'_uman operator should perform in a given

operational context, and then use these

predictions as the basis for interpreting

actual operator actions as correct or in
error. CATS-based agents are designed to

supplant the human operator; they simply
execute the activities predicted according
the model to control a simulated

controlled system (Callantine, 2001).

CATS activity tracking applications take
data on the state of the controlled system,

znd the constraints on controlled system

trajectory that define the operator's goals,
_nd use these data to generate a summary

of the current operational context. The

3



context represents the true state of the

world, to the extent possible. CATS agents,
on the other hand, maintain an internal set

of 'beliefs' that may or may not (in the

case of agents that err) reflect the true state

of world and the attendant operational
context.

The type of activity a CATS agent is

executing determines how the agents

processes beliefs when executing it.

Performing a perceptual activity entails

transforming information found in a
representation of the appropriate visual or

auditory 'display' into a set of 'beliefs'

about the information. Performing a

cognitive activity entails further
assimilation of information already present

in the agent's belief set, to produce beliefs
at different levels of abstraction and/or

aggregation, or the results of a decision

making process. Manual activities entail

executing the activity using a given

control; verbal activities entail transmitting

some information to another agent.

Underlying this scheme is the theory that
all salient activities involve transforming or

communicating contextual information.

Multi-agent Architecture

Multiple CATS agents operating together
have to date relied on a synchronous,
'tick-based' architecture to control

processing. A central controller sends each

agent a message on each 'tick' (typically

one second in duration) that cues each

agent to perform a single processing cycle.

A processing cycle consists of using the

representation of the current operational

context to predict which activities need to

be performed, and executing those
activities. This works well for CATS

models structured to enable agents to

perform multiple activities at once, in

situations where the performance of

individual agents is tightly coupled. The

flight crew agents discussed by Callantine

(2001) provide an example: the agent that

represents the pilot-not-flying can set a

target value using the Mode Control Panel

of the aircraft while simultaneously

listening for an ATC instruction on the
radio.

As the results section of this report

indicates, this scheme is not ideally suited

for air traffic controller agents;

nonetheless, it was applied as a starting

point, as depicted in Figure 1. The

architecture uses an 'Agent Hub' process
to connect to an Aeronautical Data link

and Radar Simulator (ADRS) process.
ADRS's function as simulation hubs for

the overall air traffic simulation (Prev6t,

Palmer, Smith, and Callantine, 2002). The

Agent Hub provides four critical functions

beyond synchronizing the agent

processing times. First, it receives aircraft

data from the ADRS and provides it to the

agents each time the traffic display is

updated (i.e., every twelve seconds).

Second, it forwards clearances produced

IAgent Hub

Figure 1. Generic CATS ATC agent architecture.

4



by the agents to the ADRS, which forwards
them to the aircraft simulation. Third, it

forwards handoff requests and accepts to

the appropriate agent, and finally, it

forwards aircraft flight plan and clearance

constraint information from an 'upstream"

agent to a 'downstream' agent. Thus,
when an aircraft is handed off, the

upstream agent makes flight plan and

clearance information, traditionally

recorded on 'flight progress strips,'
available to the next controller agent.

CATS Agent Architecture

The CATS ATC agent architecture is

derived from the CATS flight deck agents

described in Callantine (2001). Figure 2

depicts how knowledge representations in
the air traffic controller agents inform

each other. The agent hub provides each

agent with information about aircraft

shown on the agent's traffic display, as
well as information on aircraft flight plan

Agent

Hub

Traffic state

Handoff requests�accepts

Flight plans

constraints and handoffs. The agents have

a representation of beliefs about the
current task context, and a CATS model

that specifies the high-level activity
structure. The agent uses its task context

l:eliefs to select an activity to perform

during a given processing cycle from its

activity model. The activity model

r_presents information about how the

activity transforms beliefs. The 'Belief
Transformer' uses this information to

access a library of skills to generate beliefs
trot summarize or reformulate traffic

ifformation presented on its display, or
access a set of control rules to formulate a

clearance to issue an aircraft. Control rules

raay themselves use information from the

skill library to support the decision

raaking process. Regardless of the
particular activity the agent performs, the

agent's belief set is in some way
transformed, by adding, removing, or

ltering the agent's beliefs about the

u,,sts/accepts

Figure 2. Information flow in CATS ATC Agents.
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situation, and by changing the agent's
beliefs about the task context to reflect that

the particular activity was performed.

Beliefs that represent the current

operational context (both the task context,
and situational elements of the controlled

system) are central to the CATS agent

architecture. The agents also use beliefs to

represent retrospective context (memory

for what the agent has done) and

prospective memory for planned activities.

Through belief manipulations, the agents

implement a prospective memory process
model that resembles that of Kliegel,

Martin, McDaniel, and Einstein (2002).

The CATS agents must perform planning
in the context of reactive control, because

heuristics do not always consider the

impact of aircraft just "outside' the

problem of interest. For example, an agent

may identify two aircraft to be in conflict,

but in applying heuristics represented in

the control rules to generate a solution, the

agent may not consider the impact of

aircraft immediately behind a conflict

aircraft. By planning to issue a clearance

to solve the conflict, rather than issuing the

clearance fight away, the agent has the

option to adapt the plan if the conditions

necessary to execute it turn out not to be

met by the evolving situation. Plans are

stored, so that the agent can 'remember'
them and evaluate the conditions for

executing them.

In general, the control rules govern which

clearances should be issued or planned.

Agents use the skill library to assess

information on the traffic display, and in
some cases to formulate clearance values.

Examples of skills are detecting conflicts,

determining spacing relationships between

aircraft, and determining the exact value of

a heading vector to issue. Some perceptual

activities are purely skill-based, while some

cognitive activities reference control rules

that require accessing skills themselves.

The following sections provide additional

detail on key elements of the CATS agent
architecture.

• Maintain sitUation awareness
- Monit0r t_ffic disp!ay
- Scan aircraft

• Determine air¢_ftto work

• Managehandoffs

- Accept air_raft
• Aceept_handoff
• Roger check-in

- Initiate hantloff
• Infonm other zmntrOller
• Issue f_equencychange

• Manage,d_
- L_sued_td_rance

• Manage sepa_fi_ ....

• Manage SPrig = _

- Re-issue dear_e_

6
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CATS Model

Each agent encapsulates an activity model

to drive the high-level selection of

activities to perform. The model represents

activities hierarchically, down to the level

of actions. The CATS model developed

for the CATS air traffic controller agents is

shown in Figure 3. The model is roughly

comprised of three pieces. The first is the
'maintain situation awareness' activity, and

its children, 'monitor traffic display,' and
'scan aircraft." These activities are devoted

to gathering information from displayed
traffic information. A second portion is

the 'determine aircraft to work' activity,

which represents the activity of selecting a

problem to address from those currently
identified.

The third portion is a collection of

'manage' activities that are performed
based on the outcome of the 'determine

aircraft to work' activity. Accepting and

initiating handoffs are represented by the

'manage handoffs" activity. Note that

because the agents operate closed-loop via
the ADRS connection, the 'roger check-

in' and 'issue frequency change' activities

are not required for this implementation,

and therefore appear grayed out in Figure

3. 'Manage descents" is devoted to

providing aircraft with a descent clearance
sometime before they reach their planned

top-of-descent points. 'Manage descents'

Identify: ! ::

N

u:ies knowledge about how far the aircraft

can be cleared, given the airspace

configuration, as well as control rules for

providing positive altitude separation.

'VIanage separation' is the activity
devoted to resolving detected conflicts,

while 'manage spacing' addresses aircraft
that, while not technically in conflict, do

violate desired in-trail spacing goals.

Finally, 'manage non-conformance'
addresses aircraft that are not presently in

compliance with their constraints; based on

the type of non-compliance (lateral,

vertical, or speed), the agents re-issue a
clearances as necessary to get the aircraft

to comply.

Eeturning now to the 'maintain situation
awareness' activity, its first sub-activity is

'monitor traffic display,' which simply

enerates a belief that reflects which
aircraft are currently present in the agent's

sector. The second sub-activity, 'scan

aircraft,' is devoted to identifying the

current control problems that exist for the

sector aircraft identified by 'monitor

traffic display.' Figure 4 presents a

c etailed picture of the control problems
that the 'scan aircraft' activity identifies.

When an agent executes this activity, the

zgent's skill library is accessed to identify
cach of the classes of control problems

shown in Figure 4. The activity produces
beliefs about the existence of various

problems that are then referenced by the

Figure 4. Purpose of 'Scafl aircraft' activity. 7



'determine aircraft to work' activity. The

model, as implemented, does not

decompose the 'scan aircraft' activity into

'identify' activities. This cuts down

processing overhead somewhat, but there is

no technical reason that an agent could not

concurrently execute lower-level

'identify' activities for each of the

elements listed in Figure 4.

The 'determine aircraft to work' activity
identifies the aircraft or set of aircraft that

the controller should address next. When

executed, it references the beliefs created

during the 'scan aircraft' activity, then
selects the aircraft to work based on the

priorities shown in Figure 5. Note that
these priorities are established based on the
effectiveness of the mechanisms used to

identify the control problems as much as

how controllers are thought to prioritize

control problems. For instance, an actual

air traffic controller would most likely

assign a higher priority to non-

conforming aircraft. However, because the

agents can sometimes identify non-

conformance incorrectly, owing to the
need for further refinements to its

representation of clearance constraints (see
Callantine, 2002), non-conformance is

assigned a lower priority in the present

implementation.

The priorities shown in Figure 5 reflect the

critical importance of executing plans as

soon as the conditions for doing so are

met. For plans that consist of multiple

steps (e.g., vector an aircraft off its route,

then to a route-intercept heading, then

back on its flight plan route), later steps in

the plan may depend on earlier steps for

their success. Thus, it is important that the

early step is executed as soon as possible.

Conflicting aircraft receive the second

highest priority, as they may require the

most radical steps to address. In the

present implementation, in order for the

agents to generate a vector, aircraft must
be in conflict. Next are aircraft that need

to be spaced. The agents use speed

clearances to space aircraft, and it is

relatively easy to determine safe speeds.

Next after spacing aircraft are aircraft that

require descent clearances. The agents are

configured such that, in the absence of

conflicts during the descent, they are

certain to get aircraft down in time;
otherwise these aircraft would also receive

a higher priority. Finally, handoff

acceptance, and handoff initiation receive

lowest priority. This reflects observed
human air traffic controller behavior, in

that controllers typically do everything
else that needs to be done, then take (or

issue) several handoffs consecutively.

CATS Agent Beliefs

An important feature of the 'determine

aircraft to work' activity is, depending on

Priority:
1. Aircraft with executable plan
2. Conflict aircraft

3. Within-flow spacing problems

4. Cross-flow spacing problems

5. Aircraft that need a descent clearance

6. Aircraft that need to be handed off

7. Non-conforming aircraft

8. Handoffs that need to be accepted

Figure 5. Priority used for selecting control problems in the 'determine aircraft to work' activity.
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Always

Display needs scanning

Looked at traffic display

Have aircraft to work

Know which aircraft to accept

Know which aircraft to haad off

Know which aircraft to de_cend

Factors identified (refers to conflict aircraft)

Spacing aircraft identified

Know which aircraft to ck;ar (separate)

Know which aircraft to space

Know which aircraft isn't conforming

Figure 6. Task coP.text beliefs.

the results of the assessments it performs,
different beliefs are added to and removed

from the agent's current set of beliefs
about task context. This is an extension of

the CATS agent framework presented in
Callantine (2001) (see Appendix A for a
discussion of the extended CATS model

file specification and associated processing
issues). The beliefs used to represent task

context are shown in Figure 6. In essence,

the last several beliefs ('know which...'

and '... identified') correspond to the type

of control problem identified in
'determine aircraft to work.' The 'always'

belief ensures that the CATS model's top-

level activity, 'control traffic,' is always

active, so that the top-down search used to

predict activities in CATS has the

opportunity to find one.

In addition to the task context information

that may be included in an agent's belief
set, beliefs about the traffic control

situation may also be included. Figure 7

depicts some specific beliefs about the
current situation, memory for when

problems were last addressed, and

prospective memory for plans.

Retrospective memory for when problems
were last addressed is important because it

takes some time for the displayed traffic
information to reflect for the effects of a

clearance. Because the problem may

appear to continue to exist for a period of
t_me, without the 'check' beliefs an agent

will repeatedly address the same (higher

l:,dority) problem to the exclusion of other

problems -- even if they have actually

_lready addressed it. Prospective memory,

ia the form of plans associated with

t)articular aircraft, and especially as
reflected in beliefs about an aircraft that

has a plan that needs to be executed

i_nrnediately, is a vital part of the CATS

_.gent scheme. This is because control rules
do not address 'other' aircraft that also

i_-npact the control problem of interest.

The justification for including beliefs in
Ihe format shown in Figure 7 is for

displaying them, and also in looking ahead

1o a scheme for generating errors by

i Check_.cr_s_flow.spacing [time] [aircraft]

Check:wi_nLflow__ _acin _ [time] [aircraft]

Checlt dese. onf[time] [aircraft]

cross flow _pacing [aircraft clusters]

;[aircraft clusters]

Figure 7. Traffic control situation context beliefs.
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altering the contents of the beliefs. In the

current implementation, however, other

important information for applying the

control rules, retaining the contents of an
about-to-be-issued clearance, and of

course, the state and constraint information

for each aircraft, is maintained using

representational objects and variables in

code. The most important of these involves

'role bindings' for aircraft. The agents use

role bindings to provide a general way to
specify a frame of reference for the

application of control rules (see Horswill

and Zubek, 1999). When agents initially

execute the 'monitor traffic display'

activity (the first activity to perform after

the traffic display is updated), they access
their skill library to 'bind' aircraft to

crucial roles (e.g., 'inFront,'
'inFrontSequence,' 'firstConflict,' etc.).

For each bound role, the agents also access

perceptual skills to assign a bit-vector of

attributes. This information is simply too

fluid and too complex to represent as a

'belief string' (and would defeat the

purpose of representing it as a bit-vector to

begin with). This issue will be revisited
below, in the discussion of control rules.

Figure 8 summarizes how the agents work,

at the high level governed by the activity

model. In essence, the structure of the

activity model, and the beliefs about

control problems, plans, etc., yield a flow-

of-control that reflects the priorities used

by the 'determine aircraft to work'

activity. The flow of control can be

considered at least somewhat congruent
with that observed in actual air traffic

controllers, although further research is

needed in this area. A comprehensive set

of priorities from experienced controllers

may be difficult to elicit at a more detailed
level than that of the situation assessment

studies performed by Niessen, et al.
(1999). This is because the context

information used is largely perceptual and

likely far richer, and the prioritization

process is more deeply ingrained as skill.

Control Rules

This section describes the heuristics the

agents use to determine clearances in the

current implementation. The agents have

two top-level entry points to the rule base

depending upon whether they are

addressing a 'spacing problem,' related to

putting aircraft a specified distance in trail,

No

No

No

No

No

No

Figure 8. Flow of control resulting from the CATS model used by the CATS ATC agents.
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• If excess spacing, speed up/plan to match speeds

If insufficient spacing:

- If no aircraft in front of from or behind back, stagger
speeds

- If no aircraft in front of front, but aircraft behind
back, speed lead aircraft up

- If aircraft in front of front, but not behind back, slow
back aircraft

If aircraft in front of front, mid behind back, require
vectors (handle as conflict using separation rules)

Figure 9. CATS ATC agent: spacing rules.

or a "separation problem,' related to
resolving a conflict, including those that

occur at a merge point. In general, the

agents solve spacing problems with speed,

and separation problems with vectors.

However, by adjusting what qualifies as a

conflict to use the in-trail spacing

requirement as the separation value, the

agents can solve spacing problems by

issuing vectors.

The agents use the spacing rules shown in

Figure 9. Four strategies to space aircraft

are incorporated in the rules: 'speed

up/plan to match speeds,' 'stagger speeds,"

'speed lead aircraft up,' and 'slow back
aircraft.' The rules access two skills to

determine which rules to apply: 'excess

spacing' and 'insufficient spacing.' When
aircraft are evaluated by the spacing rules,

one is designated 'front' and the other is

designated 'back.' In cases where the

specified spacing is insufficient, the

strategy invoked is determined using the

role bindings attached to the 'front' and
'back' aircraft. Each of these aircraft, in

turn, has aircraft bound to roles called

'inFront' and 'behind,' and to the roles

'inFrontSequence' and

'behindSequence.' The latter role

bindings refer to aircraft that are actually
in front or behind, but are in 'adjacent

flows' (which is the case when two traffic

streams traverse a sector, to be merged in a

downstream sector). By referencing the

role bindings, the spacing rules can base

s_:rategy determination on the presence of
'other' aircraft in the vicinity of the

s _acing problem.

Agents can issue clearances immediately

for all of the spacing strategies, except

when there is excess spacing. In this case,

the agent immediately issues the back
aircraft clearance to accelerate to 'close

the gap,' and establishes a plan to match
the lead aircraft's speed when the spacing

reaches the desired spacing. The plans that

the agents use are described in the section
that follows. As noted above, spacing

problems that occur in the midst of other

aircraft are handled by separation rules

u:dng vectors.

l:igure 10 shows the separation

('vectoring') rules that the agents use.

Vectoring to resolve conflicts is more

complex than issuing speed clearances for

spacing, because nothing can be done

without prior planning. Rules are again
structured to reference a 'front' and

'i_ack' aircraft and role bindings are used

to reference aircraft in the vicinity of those

in conflict. Because the agents only
address aircraft in arrival flows, conflict

magles are small, and as such, the 'front'
and 'back' designations make sense.

Separation rules for 'opposite direction'
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If front _ecfly__ont and no aircraft betfindback:

If merge, plan to merge

- Otbetwise, plan minimal offset

If front direly in front and aircraft behind back:.

- If merge, plan.to merge

- Otherwise, plan minimal offset andplan to match
vectors _for aircraft behind back

If front in front sequentially and no aircraft behind back:

- Ifm_ge, plan toturn in to merge

- Oth_ise, plan to vector and turn back

If front in _ont sequentially and aircraft behind, back:

- If merge, plan to turn in to merge

- Otherwise, plan to vector and turn back and plan to
match vectors for aircraft behind back

Multi_aixeraft conflicts

- Ordy handlein cases of merge, using plan to merge or
plan to turn in to merge

Figure 10. CATS ATC agent separation rules.

conflicts, and conflicts between arrivals

and 'other' aircraft require a prioritization
scheme for which aircraft should best be

vectored, which is a subject of further
research.

Several skills are accessed by the

separation control rules. Specifically,

agents have a skill for determining whether

the conflict in question is a 'merge

condition,' and skills for assigning values

for each type of vectoring plan. A given

vectoring strategy consists of multiple plan

steps (e.g., the strategy 'plan to vector and

turn back' consists of three plans: 'delay
vector,' 'turn back vector,' and 'resume

route'). Some separation rules also address

planning for vectoring aircraft bound to

roles. For example, when an aircraft is

directly behind the 'back' aircraft (i.e.,

bound to its 'behind' role), agents apply

the strategy 'plan to match vectors' to that

aircraft in the same planning pass, so that
the aircraft behind the 'back 'aircraft can

be delay-vectored first. Experienced air

traffic controllers have been observed to

use this technique. Conflicts involving

more than two aircraft present a special

case. The agents cannot reasonably sort

out how to plan to turn multiple aircraft,

except when all axe merging at the same
point. In this case, the role bindings are

used to establish a sequence, which breaks
the conflict into a number of conflict

pairs.

The agents use knowledge about when

aircraft in their particular sector should
descend in order to hand them off at the

required altitude. Control rules also

incorporate positive altitude separation.

These rules attempt use the aircraft bound

to the role 'firstConflict' to gauge whether

the aircraft can be cleared all the way

down to the required sector-exit altitude

for arriving aircraft, or whether an
intermediate altitude above the conflict

aircraft is required. Agents re-address
aircraft cleared to an intermediate altitude

periodically (via 'check_descent' beliefs)
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to determine if they can be cleared to a
lower altitude, until the aircraft are cleared

all the way down to the exit altitude for the

sector.

Plans

From the discussion of control rules above,

it is clear that planning plays a critical role

in the successful application of control

strategies. Agents are not capable of

globally assessing clearance options under

the 'application of heuristics' scheme

employed in this research. Thus, plans are

constructed of steps that have, based on

their type, a set of conditions under which

the plan should be executed or adapted
(which includes abandoning the overall

plan or a step of the plan altogether).

Several plans (plan 'steps') were identified
for inclusion in the planning strategies

used by the control rules. Figure 11 shows

these plans as they relate to the lateral,
vertical, and speed dimensions of control.

Five were never used (shown grayed-out in

Figure 11). The vertical plans are
supplanted by immediate clearances (i.e.,

there was no perceived need to plan these

actions). The lateral plans 'direct-to," and
'meter fix direct-to' were also never

needed; the plan 'return to route' covers
both of these functions. Lastly, the speed

plan 'allow to pass' introduced difficulties
with role bindings (e.g., by its very nature,

at some point the aircraft 'inFront"

tecomes the aircraft 'behind,' etc.).

Because the agents bind roles before the

plans are checked for execution, this

created problems. 'Naturally faster'

aircraft are therefore obliged to stay
behind slower aircraft for spacing, under

Ibis scheme.

The remaining plans shown in Figure 11

combine to cover the control strategies

implemented by the control rules. The

agents use the lateral plans to implement

_;trategies used in the separation rules.

Lateral planning strategies entail, first, a

plan to 'delay vector' (or 'match planned

lead delay vector'), followed in some cases

by a 'turn back vector' (or 'match

planned lead turn back vector'). Finally,

_ateral planning strategies add a 'return to

route' plan (or a 'return to heading' plan,
if the aircraft has no known route to

rejoin). The agents determine the values of
_:he vectors encompassed by the plans

_lsing skills in their skill library.

The agents use speed plans to implement

:_trategies used by the spacing rules. Speed

:_lans are given in pairs, depending on
_vhether a Mach number or indicated

airspeed is called for. While the spacing

:_ules shown in Figure 9 reference only the

'match lead' speed or mach plans

,_;xplicitly, the agents use the remaining
tow-level 'accelerate' and 'decelerate'

_peed plans as necessary to implement the

'stagger speeds' strategy.

Lateral plans: - Vertical plans:
- Delay vector - Climb temporary altitude
- Match planned lead delay vector - Descend temporary altitude
- Turn back vector - Speed plans:
- Match planned lead turn back - Match lead speed

vector - Match lead mach
-Returntoheading - Accelerate
- ,Return to route - Accelerate-mach
- Direct-to - Decelerate
- Meter fix direct-to - Decelerate-mach

- Return to route-merge - Allow to pass

Figure 11. Plans to implement planning strategies used in control rules.
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Speed plans:
- M_itch lead speed

• Not insufficient spacing & not excess spacing
- Match lead roach

• Not insufficient spacing& not excess spacing
- Accelerate

• Excess spacing
- Accelerate-roach

• Excess spacing
- Decelerate

• Insufficientspacing
- Decelerate-mach

• Insufficientspacing
- Allow to pass

• No conditions (requires 'naturallyfaster' mles to be in
effect)

Figure 12. Execution conditions for speed plans.

A critical feature of each type of plan is
the set of conditions under which the

agents should execute it. Each plan has
conditions for execution that relate to the

control strategy that the agent was
following when developing the plan for an
aircraft. The execution conditions

reference roles that the agents bind to the

plan at the time it is developed. A plan

records, for example, the 'front' aircraft

against which proper spacing is to be

measured. In addition, a plan records the

time the agent developed it and, in the case
of turn-back vectors, the value of the

vector and the time at which the agent

plans to execute it.

Figure 12 shows the execution conditions

for speed plans. The execution conditions

reference the agent's skills to detect

insufficient and excess spacing. For

example, when an agent implements the

strategy termed 'speed up/plan to match

speeds,' it clears the 'back' aircraft to a

faster speed and also logs a 'match lead

mach' plan for it. Each time it executes

the 'scan aircraft' activity, the agent
checks whether the 'back' aircraft has

closed to the desired distance behind the

'front' aircraft referenced by the plan. If
it has, it executes the plan to match the

lead aircraft's Mach by issuing the

appropriate Mach number as a clearance.

As shown in Figure 13, the conditions for
executing lateral plans are more complex.

Typically, they include conditions for

executing the plan under circumstances

where vectoring skills handled the situation

well, along with some that function as

'stop-gap measures.' Such conditions are

required when, for example, the agents

vector aircraft toward a sector boundary,

or when the aircraft flies on a vector past a

waypoint that was to be the point at which

the aircraft rejoined the route. Some
conditions are included to ensure that

aircraft cross the meter fix. Still others

make sure an aircraft is not handed off

before it has been cleared to rejoin its filed

routing, as the plans with which the agent

sought to accomplish that are not

transmitted to the receiving agent; only the
current clearance constraints that the

aircraft is following are transferred. In

short, deficiencies in the agent's skill

library, together with the dynamics of

addressing various control problems,

necessitate ways to adapt plans to ensure

the agents issue reasonable clearances.
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Lateral plans:
- Delay vector

• If handed off, send dh'ect to next waypoint
If close to Meter Fix, send direct to meter fix

• If planned time, execute as is

- Match planned lead delay vector

• If handed off. send direct to next waypoim
If close to Mete_ Fix, send direct to meter fix

• If back ain_ft noll, execute as is

If back a_'raft doesn't have a plan to turn out,
execute as

• If planned time, execute as is
- Turn back vector

• If hanck.d off. send direct.to next waypoint
• If time to Mete_ FLX,send direct to meter fix
• If planned time, execute as is
• If not ex_e. spacing or insufficient spacing,

abandon

- Match planned lead turn back vector
• If handed off, gad dh'ect to next waypoim

If close to Meter FLX.send direct to meter fix
• If front aircraft null, execute as is

• If frnnt aircrnft d0esn't have a plan to turn back,
execute as is

• If planned time, cxe_te as is

• If not exce_ _ing c_ insufficient spacing,
abandon

- Returnto head_g
If handnd off, send direct to next waypoint

If close to lector bounds, execute as is
If close to Meter Fix. send direct to meter fix

If not excess spacing of in.mmcient spacing, abandon
- Return to route

If handed off, send direct to next waypoint
Ifclme to _ector bound, executeuis

If aircraft has passed _c next fix, send din_ to the
following fix

[fclose to Meter Fix. sendd/rectto me.fix
ff not excess spacing ot imuffic_eat spacing, abandon

-
(not reed- mpercedndby rctum to route)

- Meter fix direct-to

(not used- stJ_-ccdcd by retina to route)

- Return to route-merge

If handed off, send direct to next waypoint

If frout ah-crnfthas passed the next fix. execute as is
If aircraft has missed it's slor_ re=plan to merge

Ifhaveoreq"uiFd" m__e spacingaad aircrafthas beenon a
vectoftotatleast60 sees,_ asi$

Figure 13. Execution conditions for lateral plans.

Example Operations

This section presents two examples of how

the agents control traffic. The first

example describes how the agents address

one type of in-trail spacing problem; the

second example describes a 'merge

problem."

The example spacing problem is captured

in Figure 14, which depicts a situation with
two in-trail flows moving roughly from

left to right. After receiving a traffic

update from the ADRS, the agent executes

the 'monitor traffic display' activity and

acquires the belief that the 'sector aircraft'
include AAIA97, AAL630, and AAL508

(AAL137 is not yet in this set, but will be

shortly). The successful execution of

'monitor traffic display' results in the

agent adding the 'task context' belief

'looked at traffic display' (see Appendix
A), which enables execution of the 'scan

aircraft' activity. The agent executes 'scan

aircraft' on the next tick, upon which the

agent accesses its skill library to assess the
'sector aircraft' traffic. The skill library

checks for conflicts (i.e., separation

problems) and spacing problems, and adds

a 'within_flow_spacing' belief for
/_M.,630 and AAL508. AAL630 is bound

to the role 'behind' in the aircraft

AAJ.,508, and AAL508 is bound to the
r:)le 'inFront' in AAL630. Successful

completion of the 'scan aircraft' activity
i_astalls a 'have aircraft to work' belief,

which triggers the 'determine aircraft to

work' activity.

When the agent executes 'determine

aircraft to work' activity, it notes the
l:resence of the 'within_flow_spacing

/_J.,508 AAL630" belief in the agent's

Lelief set. If the agent has a

'::heck_within_flow_spacing' belief for

t_lis aircraft pair that tells the agent when it

c;m reasonably re-address this particular

spacing problem, it will move on to other

l:roblems. Similarly if higher priority

1:roblems exist (i.e., aircraft with a plan
tlmt needs to be executed, or aircraft in

conflict -- see Figure 5), the agent will

address those problems first. However,

assuming the agent holds neither of these
l:eliefs, the 'determine aircraft to work'

activity has the effect of installing a

'spacing aircraft identified' belief in the

agent's belief set. This enables the agent to
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Figure 14. Example in-trail spacing problem involving AAL508 and AAL630.

execute the 'evaluate spacing clearance

options' sub-activity of 'manage spacing'
on the next tick.

The activity 'evaluate spacing clearance

options' actually accesses the agent's
control rules to determine the appropriate

control strategy. Because AAL508 and
AAL630 are more than ten nautical miles

in trail (plus a small tolerance), the control
rules determine the appropriate strategy is

'speed up/plan to match speeds' (see

Figure 9). Using this strategy, the agent
accesses an aircraft performance database,

and sets up a clearance to accelerate
AAL630 to its maximum Mach. It also

logs a plan to 'match lead mach' with

AAL630. It completes execution of

'evaluate spacing clearance options' by

adding the task context belief 'know

which aircraft to space' to the agent's
current beliefs. Thus, on the next tick, the

agent's model indicates that the 'issue

spacing clearance' activity should be

executed. When the agent executes the

'issue spacing clearance' activity, the

agent sends the clearance to accelerate
AAL630 to its maximum Mach to the

ADRS, via the Agent Hub.

Processing then continues, with the agent

checking AAL630's plan to match the
Mach of AA.L508 each time it executes the

'determine aircraft to work' activity. At

some point, AAL630 will have closed the

gap with AAL508 -- the condition for

executing the 'match lead mach' plan. At

this time (assuming this plan is the first

requiring execution that the agent finds),

the agent readies the appropriate clearance

for AAL630, and acquires the 'know
which aircraft to clear' belief. On the next

tick, the agent issues the clearance which,

when AAL630 complies, results in proper

in-trail spacing between AAL508 and
AAL630.
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The second example concerns the merge

situation shown in Figure 15; the figure
shows the solution of merge problem in

progress. The agent first identifies
AAL6080 as in conflict with UAL1114.

When the agent selected this conflict as

highest priority in the "determine aircraft
to work' activity, it performed the

'evaluate separation clearance options'

activity. The agent accessed its control

rules, and used the role bindings for each
aircraft to determine that the UAL1114 is

in front of AAL6080 sequentially, and that

there is no aircraft immediately behind
AAL6080. It also determined that the two

aircraft are merging at UKW, causing it to

apply the strategy 'plan to turn in to

merge' (see Figure 10). When the agent

applied this strategy it cleared AAL6080

to a 095 heading, and logged a 'return to

route - merge' plan with AAL6080. The

agent is now in the position to repeatedly
evaluate the conditions for executing this

plan (see Figure 13) each time it executes
the 'determine aircraft to work' activity.

After AAL6080 started its turn, the agent

determined that AAL6080 was also in

conflict with DAL323 (see Figure 15). The

_gent then followed the same solution
method as it did for the first conflict.

When the agent applied its control rules to

DAL323 and AAL6080, it again
cletermined that these aircraft are to merge

_tt UKW, and used the aircraft's role

bindings to determine that, in this case,
AAL6080 is in front of DAL323

sequentially, and there is no aircraft
behind DAL323. Thus, the agent again

_tpplied the 'plan to turn in to merge'

_,trategy (see Figure 10), which resulted in

_t 245 heading for DAL323, together with

_ plan for DAL323 to 'return to route -

merge.'

Figure 15 shows the situation after both
AAL6080 and DAL323 have begun to

l arn onto their new headings. Each time

Ihe agent executes the 'determine aircraft
Io work' activity, it evaluates the status of
these aircraft in relation to the aircraft in

front of them at the time their plans were

formulated. After the plans have been in

effect for sixty seconds (to avoid

Figure 15. Example merge problem involving UALI 114, AAL6080, and DAL323.
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immediate turn-backs in certain situations),

the agent checks AALt080's distance to
UKW versus UAL1114's, and DAL323's

distance to UKW versus AALt080's.

Eventually, the agent finds that the

heading vector has produced the required

merge spacing between UAL1114 and
AAL6080, and executes AAL6080's

'return to route - merge' plan. This sets

up a clearance for AAL6080 to proceed
direct UKW. After AAL6080 has begun to

converge on UKW, eventually the

conditions for executing the plan for

DAL323 to 'return to route - merge' will

be met, and the agent will issue a clearance

for it, too, to proceed direct UKW,

completing the merge.

In summary, the CATS air traffic

controller agents use periodically updated
data on the state of arrival traffic to

generate a 'picture' of the traffic situation.

Agents update beliefs about the situation

by executing activities represented in a
hierarchical model according to beliefs
about the task context. Based on

assessments of what needs to be done, and

a prioritization scheme for choosing the

problems to address, the agents formulate
clearances and issue them, or plan

clearances to issue when the appropriate

conditions are met. To do this, the agents

reference a library of skills for assessing

displayed traffic, and a set of control rules
that incorporate strategies for spacing and

separating aircraft, as well as employing

positive altitude separation. The remainder

of this report offers an appraisal of how

well the agents perform, and discusses
further research.

Performance Assessment

It is impossible to determine how well the

agents perform, and what modifications

might be necessary to improve them,

without applying them to an exhaustive set
of traffic flow conditions and airspace

configurations. However, with an eye

toward their practical use supporting

18

studies of operational ATC concepts, a

preliminary performance assessment was
conducted. NASA ATM research has

focused on airspace centered on Dallas-
Fort Worth Center (ZFW) with arrival flows

to Dallas/Fort Worth (DFW) airport (for

details on the test airspace and the

concepts under study, see Callantine, et al.,
2001, and Battiste, et al., 2002). Thus,

airspace in this region was chosen for

testing the agents. Agents were

implemented to control the Wichita Falls

High Altitude sector (SPS), the Ardmore

High Altitude sector (ARD), and the sector

responsible for merging arrival flows from
these sectors to cross the BAMBE meter

fix, the Bowie Low Altitude sector (UKW).

Figure 16 shows the architecture for

testing the agent implementation. Figure

17 shows a screen snapshot of the UKW

agent controlling traffic.

Traffic scenarios were derived from those

currently being used as the baseline

scenarios for NASA studies extending the

research reported in Callantine, et al.

(2001), and from current-day traffic flows.

The 'new concept' scenarios constructed

specifically for testing advanced ATM

concepts do not necessarily reflect the
traffic flows that the selected sectors would

experience during normal current-day

operations. On the other hand, the
'current-day' arrival rushes may be too

difficult to manage without the capability

to issue holding clearances. Thus, as with
all ATM research, traffic scenario selection

poses a problem.

Nonetheless, two 'new concept' baseline

scenarios ('AI' and 'BI') were used as is,

and modified (lightened) twice each, to

produce six test scenarios, and three
additional 'current-day' scenarios were

produced by reducing the traffic in a

'current-day' scenario ('CI'), yielding a

total of nine agent test scenarios. Figure 18
shows the number of arrival aircraft in

each



Bowie Agent (UKW) ]

Figure 16. Three-agent test architecture.

Figure 17. Screen snapshot of the UKW agent.
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scenario. Figure 19 shows that the total
time for aircraft to arrive in each condition

was comparable, but the agents were able

to compress the traffic in the 'A' group of
scenarios.

For the performance assessment, each of
the nine scenarios was run twice. First each

scenario was run in a 'descent only'

control condition with agents issuing only
descent clearances to the sector exit

altitude. Each scenario was then run again,

with the agents controlling traffic to the
fullest extent (i.e., issuing speed,

heading/route, and positive altitude

separation clearances). In the descent only
condition, aircraft always remain on their

filed flight plans but, as the results show,
are still subject to some nuances of agent
behavior. Traces of the traffic flows for

each test run appear in Appendix B; the

traces for the descent only condition help
characterize the traffic flow in each

scenario.

In general, the performance assessment

reveals that the agents generally do a good

job handling spacing problems in the high

altitude sectors (SPS and ADM). The

agents are less adept at handling merge

problems, and even less so at handling

difficult multiple merges at the meter fix.
Nonetheless, in no case did the agents fully

controlling traffic produce more

separation violations than in the

uncontrolled ('descent only') condition.
The results also show that traffic with a

particularly large number of simultaneous
conflicts (and the relatively large numbers

of plans that may need executing) can

leave the agent little time to perform other,

lower priority tasks. For example, the

results show that when too many aircraft

are merging at the meter fix, the UKW

agent has trouble managing descents. The

agent may descend aircraft to temporary

altitudes, but may fail to issue lower
clearances in time for aircraft to reach the

required sector exit altitude.
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18. Number of arrival aircraft in each test scenario.
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Figure 19. Time for all aircraft to cross the

meter fix by scenario and condition.
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Comparison of' Separation ¥iolattons Between Two Coml_Jrlson or Number of Aircraft Hi|h st BAMBE

Conditions Between Two Conditions
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Figure 20. Number of separation
violations in each scenario for each of the

two conditions.
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Figure 21. Location of separation
violations under each condition.
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Figure 22. Number of aircraft not at the

desired crossing altitude at BAMBE under
(;ach condition.

The results first focus on the number of

_,eparation violations that result under each

(rf the two conditions. Data produced by

the aircraft simulation were analyzed using

_t computer-based analysis program. The

_tnalysis program measures separation
_,iolations stringently. A pair of aircraft

with less than the required vertical

separation registers as a separation
_,iolation when lateral separation falls even
_ infinitesimal amount below five nautical

miles (i.e., 4.98 nm counts as a violation).

Figure 20 shows that, for every scenario,
the full-control condition results in fewer

,;eparation violations than occur in the

descent-only condition. For the A and B

,;cenario sets, the agents created relatively

few separation violations, while for the
]nore dense traffic in the C scenario set, the

;,gents created a considerable number of

,.eparation violations.

Figure 21 shows the agents in the full

control condition created a single

_,;eparation violation that involved at least
one aircraft that was still in a high altitude
:;ector in three of the nine scenarios. All

lhree of these violations were of the

barely below five nautical miles' variety.
The remainder of the violations all
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occurred in the UKW Low Altitude sector,

where the aircraft must merge before

crossing the meter fix. Figure 21 also
shows that, for the descent only condition,

a larger number of separation violations

occurred in the high altitude sectors. In

Appendix B, lines connect points where

spacing minimums were violated (while

not always clearly visible in the charts,

these lines sometimes help visualize where

some violations occurred).

Finally, Figure 22 depicts the problem
noted earlier, in which agents can become

overloaded handling conflicts. The UKW

agent's performance, in particular, suffers

from this problem. Figure 22 shows that
aircraft failed to achieve the altitude

necessary for crossing the BAMBE meter

fix more frequently in the full control

condition. This problem rarely occurred in

the descent only condition.

Conclusions and Further Research

Overall, the agents perform well in the

High Altitude sectors. However, the UKW

agent can become overloaded easily; too

many merge conflicts and attendant plans

cause the UKW agent to ignore aircraft
that need lower altitude clearances. This is

likely due largely to activities taking one
second to execute, as is currently required

by the agent architecture. The agents also

merge traffic reasonably well, but priorities
should be more flexible, so that aircraft

that require a lower altitude immediately
are sure to receive the clearance. In

general, despite these difficulties, the

agents show considerable promise as tools

for both understanding how air traffic

controllers operate, and for supplanting

expensive, variable human air traffic

controllers in future ATM concept studies.

There is considerable room for refinement

in several areas. First the hub-based

architecture needs to support

asynchronous processing, such that the

agents can execute activities as time

22

permits (currently, they wait until next

'tick' to perform the next activity).
Second, the control rules and skills could
benefit from some refinements. In

particular, the vectoring skills, and the

plans that result when they are applied,

may operate more effectively if based on

specific attributes of the merge that is

taking place.

The notion of improving the flexibility of

the agents is, indeed, overarching. Role

bindings could be performed dynamically

depending on the situation (e.g., spacing
versus merging). Plans could benefit from

more flexible, dynamic adaptation.

Tolerances used by perceptual skills could

be set dynamically depending on the
situation. And timing values used in beliefs

that dictate when a problem can be re-

addressed could similarly be situation-

specific. All of these areas should be
refined with the aid of actual air traffic

controller input, to the extent possible.

One approach would be to take data on
actual controller behavior for

representative classes of control problems,

as was done for particular conflict classes
in the RAMS research (Mondoloni, 1998).

This is but one of several areas of further

research. Other areas include extending

the CATS agent architecture, with its

mechanisms for manipulating an agent's
beliefs about the task context and control

situation, to enable the agents to make

realistic errors. The error-making

capability could be applied for safety

assessment of ATM concepts. A second

area of research is integrating the ATC

agent capabilities into a compact module
that would enable it to be integrated into a

flexible controller station, in which agent

control could be toggled on and off. Part

of this research will entail enabling the

agents to access advanced ATC automation

tools that play a central role in new ATM

concepts (e.g., Callantine, et al., 2001). A

variety of new skills and control rules will



requiredevelopmentto supporttool usage
by theagents.For example, the agents will

require access to information presented as
a timeline of arrival aircraft, and

functionality designed to predict precise

speeds necessary to meet scheduled meter

fix crossing times. Thus, this report has

presented initial work toward these aims.
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Appendix A

The following is the file specification for the CATS model used by the CATS ATC agents (Table A-l).

Below it, this appendix provides some explanation on how it works.

Table A-1. CATS ATC agent model file specification.

! ATC AGT (Current-Day Operations -- put ACmiles-in-trail)

generic_0.4.l.proc

! This one uses MULTIPLE RETURN VALUES from act-beliefs

! Changes for beliefs-based situation representation

{ topLevel "Control traffic"

conditions "predicted ....always"

{ function "maintain situation awarenesE;"

conditions "predicted" "always"

{ task "monitor traffic display"

conditions "predicted ....display needs sc_anning"

act_type "perceptual"

conditions "act-beliefs" ( visually to _elf "<sector

aircraft>.set_value" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "display needs scanning" ) )

}

{ task "scan aircraft"

conditions "predicted ....looked at traffic display"

act_type "cognitive"

conditions "act-beliefs"

( cognitively to self "<traffic>,assess" )

conditions "rslt-beliefs-false" (and

( cognitively from self "loeked at traffic display" )

( cognitively to self "display needs scanning" ) )

conditions "rslt-beliefs-true" (and

( cognitively from self "loc_kedat traffic display" )

( cognitively to self "have aircraft to work" ) )

} ! end "maintain situation awareness"

{ function "determine aircraft to work"

conditions "predicted ....have aircraft to: work"

act_type "cognitive"
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conditions "act-beliefs" ( cognitively to self "<aircraft to

work>.evaluate" )

conditions "rslt-beliefs-hoa" (and

( cognitively from self "have amrcraft to work" )

( cognitively to self "know which aircraft to accept" ) )

conditions "rslt-beliefs-hoi" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "know which aircraft to hand off" ) )

conditions "rslt-beliefs-td" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "know which aircraft to descend" ) )

conditions "rslt-beliefs-factors" (and

( cognitively from self "have alrcraft to work" )

( cognitively to self "factors identified" ) )

conditions "rslt-beliefs-spacing" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "spacing aircraft identified" ) )

conditions "rslt-beliefs-non-conf" (and

( cognitively from self "have alrcraft to work" )

( cognitively to self "know which aircraft isn't conforming"

))

conditions "rslt-beliefs-exec-plan" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "know which aircraft to clear" ) )

conditions "rslt-beliefs-false" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "display needs scanning" ) )

)

{ function "manage handoffs"

conditions "predicted" ( or

"know which aircraft to accept"

"know which aircraft have accepted"

"know which aircraft to hand off"

"know which aircraft is accepted" )

{ task "accept aircraft"

conditions "predicted" ( or

"know which aircraft to accept"

"know which aircraft have accepted" )

{ subtask "accept handoff"

conditions "predicted ....know which aircraft to accept"

act_type "manual"

conditions "act-beliefs"

( manually to "<previous controller> ....<incoming aircraft>.accept"

)

conditions "rslt-beliefs-true" ( and
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( cognitively to self "looked at traffic display" )

( manually to "<previous controller> ....<incoming aircraft>.accept"

)

( cognitively from self "know which aircraft to accept" ) )

! this is in case there is <previous cor troller> is GHOST

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to accept" ) )

}

! this has to wait for check-in from aircraft

{ subtask "roger check-in"

conditions "predicted ....know which aircraft have accepted"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<incoming aircraft> ....<incoming aircraft>.roger" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft have accepted" ) )

}

{ task "initiate handoff"

conditions "predicted" ( or

"know which aircraft to hand off"

"know which aircraft _s accepted" )

{ subtask "inform other controller"

conditions "predicted ....know which airclaft to hand off"

act_type "manual"

conditions "act-beliefs"

( manually to "<next controller> ....<outgoing aircraft>.handoff" )

conditions "rslt-beliefs-true" ( and

( manually to "<next controller> ....<outgoing aircraft>.handoff" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to hand off" ) )

! this is in case there is <next controller> is GHOST

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know whic:h aircraft to hand off" ) )

}

' this has to wait for accept from othe]: controller

{ subtask "issue frequency change"

conditions "predicted ....know which airc]:aft is accepted"

act_type "verbal"

conditions "act-beliefs"
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( verbally to "<outgoing aircraft> ....<outgoing

aircraft>.freq_change" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft is accepted" ) )

}

{ function "manage descents"

conditions "predicted ....know which aircraft to descend"

{ task "issue descent clearance"

conditions "predicted ....know which aircraft to descend"

act_type "verbal"

conditions "act-beliefs"

( cognitively to self "<descent aircraft>.assign_alt" )

conditions "rslt-beliefs-true" ( and

( verbally to "<descent aircraft> ....<descent aircraft>.descend" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to descend" ) )

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to descend" ) )

}

{ function "manage separation"

conditions "predicted" ( or

"factors identified"

"know which aircraft to clear" )

{ task "evaluate separation clearance options"

conditions "predicted ....factors identified"

act_type "cognitive"

conditions "act-beliefs"

( cognitively to self "<separation aircraft>.evaluate_and_set" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "know which aircraft to clear" )

( cognitively from self "factors identified" ) )

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "factors identified" ) )

}
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{ task "issue separation clearance"

conditions "predicted ....know which aircr!ift to clear"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<aircraft to clear> ....<aircraft to clear>.clear" )

conditions "rslt-beliefs-true" ( and

( verbally to "<aircraft to clear> ....<aircraft to clear>.issue" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to clear" ) )

}

{ function "manage spacing"

conditions "predicted" ( or "spacing aircraft identified"

"know which airc_caft to space" )

{ task "evaluate spacing clearance options"

conditions "predicted ....spacing aircraft identified"

act_type "cognitive"

conditions "act-beliefs"

( cognitively to self "<spacing aircraft>.evaluate_and_set" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "know which aircraft to space" )

( cognitively from self "spacing aircraft identified" ) )

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "spacing aircraft identified" ) )

}

{ task "issue spacing clearance"

conditions "predicted" "know which aircraft to space"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<aircraft to space> ....<aircraft to space>.clear" )

conditions "rslt-beliefs-true" ( and

( verbally to "<aircraft to space> ....<aircraft to space>.issue" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know whiclh aircraft to space" ) )

}

{ function "manage non-conformance"

conditions "predicted ....know which airczaft isn't conforming"
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{ task "re-issue clearance"

conditions "predicted ....know which aircraft isn't conforming"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<non-conforming aircraft> ....<non-conforming

aircraft>.re-clear" )

conditions "rslt-beliefs-true" ( and

( verbally to "<non-conforming aircraft> ....<non-conforming

aircraft>.issue" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft isn't conforming" ) )

The file specification specifies information about the hierarchy of activities represented in the model. It also

specifies the conditions under which they are 'predicted' (i.e., executed, in the case of CATS agents), what

underlying skills and control rules an activity must access to execute, and what the agent's task context

beliefs should reflect after they have executed an activity. The model specifies the activity hierarchy using

'curly brackets.' Activities are designated as "function," "task," etc., for no particular reason, except that

past CATS implementations have used such designations (see Callantine, Mitchell, and Palmer, 1999, for

discussion of the CATS model's roots in Operator Function Model methodology).

After an activity's name is information about the activity's type ('cognitive,' 'perceptual,' 'verbal,' or

'manual'), and a series of 'conditions' expressions. The first (order doesn't really matter, but an order is

maintained for readability) is the conditions under which the activity is 'predicted.' These conditions

reference task context beliefs. The second is 'act-beliefs.' This is the key expression for accessing

underlying knowledge about how various beliefs get la'ansformed by the so-called 'Belief Transformer'

module in Figure 2 of the main text. Inspection of the model finds examples such as "<sector

aircraft>.set_value", "<aircraft to work>.evaluate", "<separation aircraft>.evaluate_and_set", etc. These

identifiers cue methods in the Belief Transformer module to perform the indicated manipulations by

accessing the agent's skill library and control rules. The belief transformer installs the required beliefs in the

agent's belief set, and returns a value that tells the agent how to adjust its task context beliefs.

The best example of this is what happens when the Belief Transformer is sent the cue "<aircraft to

work>.evaluate" when an agent executes the activity 'determine aircraft to work.' Based on the priorities

described in the main text (Figure 5), the Belief Transformer finds, first, whether there are any beliefs in the

agent's belief set that say an aircraft with an executable plan exists ('plan__exec [aircraft]'). If so, the Belief

transformer returns a PLAN_EXEC value, which in turn tells the agent to adjust its task context according

to the 'conditions "rslt-beliefs-exec-plan"' clause in the model, and so on, for all the other outcomes. In this

example, the task context information 'know which aircraft to clear' gets added to the agent's belief set. An

interesting twist is, in evaluating plans to execute, the control rules actually set the value of the aircraft to

clear, and the clearance value specified by the plan, so that when the activity 'issue separation clearance'

fires (because its 'predicted' conditions are 'know which aircraft to clear'), and sends the cue "<aircraft to

clear>.clear"' to the Belief Transformer, the Belief Transformer 'knows' which aircraft and what clearance is

intended.
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While a bit confusing, this scheme allows knowledge that r:,_sides in code to operate in concert with

knowledge provided by the CATS model file specification. Earlier CATS agent applications (Callantine,

2001) use a similar scheme. Activity tracking applications CCallantine, Mitchell, and Palmer, 1999) are

able to encapsulate all the required knowledge except rules for activating 'context specifiers' in the model

file specification.
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Appendix B

This appendix shows traffic flows for each of the scenarios in each of the two conditions. The traffic traces

are shown in pairs, with the full control condition on the top, and the descent only condition on the

bottom.

33



34

Figure B-1. Flows for scenario A-1.



FigureB-2.Flowsfor._;cenarioA-2.
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Figure B-1. Flows for scenario A-3.



FigureB-4.Flowsfor:_cenarioB-1.
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Figure B-5. Flows for scenario B-2.



Figure B-6. Flows for scenario B-3.
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Figure B-7. Flows for scenario C-1.



FigureB-8.Flowsfor i_cenarioC-2.
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Figure B-9. Flows for scenario C-3.
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